/** * @brief Made some simple modifications to the official UART * */ // Copyright 2018-2025 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "freertos/ringbuf.h" #include "freertos/event_groups.h" #include "esp_err.h" #include "esp_log.h" #include "esp_attr.h" // SWO modify #include "DAP_config.h" #include "esp8266/uart_struct.h" #include "esp8266/uart_register.h" #include "esp8266/pin_mux_register.h" #include "esp8266/eagle_soc.h" #include "esp8266/rom_functions.h" #include "rom/ets_sys.h" #include "uart_modify.h" #include "driver/uart_select.h" #define portYIELD_FROM_ISR() taskYIELD() #define UART_ENTER_CRITICAL() portENTER_CRITICAL() #define UART_EXIT_CRITICAL() portEXIT_CRITICAL() static const char *UART_TAG = "uart"; #define UART_CHECK(a, str, ret_val) \ if (!(a)) \ { \ ESP_LOGE(UART_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } #define UART_EMPTY_THRESH_DEFAULT (10) #define UART_FULL_THRESH_DEFAULT (120) #define UART_TOUT_THRESH_DEFAULT (10) typedef struct { uart_event_type_t type; /*!< UART TX data type */ struct { size_t size; uint8_t data[0]; } tx_data; } uart_tx_data_t; typedef struct { uart_port_t uart_num; /*!< UART port number*/ int queue_size; /*!< UART event queue size*/ QueueHandle_t xQueueUart; /*!< UART queue handler*/ uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */ // rx parameters int rx_buffered_len; /*!< UART cached data length */ SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/ int rx_buf_size; /*!< RX ring buffer size */ RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/ bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */ int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/ uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/ uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/ uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/ uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */ // tx parameters SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/ SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/ SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/ int tx_buf_size; /*!< TX ring buffer size */ RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/ bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/ uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/ uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/ uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/ uint32_t tx_len_cur; bool wait_tx_done_flg; uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */ } uart_obj_t; static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0}; // DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {&uart0, &uart1}; typedef void (*uart_isr_t)(void *); typedef struct { uart_isr_t fn; /*!< isr function */ void *args; /*!< isr function args */ } uart_isr_func_t; static uart_isr_func_t uart_isr_func[UART_NUM_MAX]; // SWO modify extern EventGroupHandle_t kUART_Monitoe_event_group; #define UART_GOT_DATA BIT0 extern void SetTraceError(uint8_t flag); #define DAP_SWO_CAPTURE_ACTIVE (1U << 0) #define DAP_SWO_CAPTURE_PAUSED (1U << 1) #define DAP_SWO_STREAM_ERROR (1U << 6) #define DAP_SWO_BUFFER_OVERRUN (1U << 7) // esp_err_t my_uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->conf0.bit_num = data_bit; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((data_bit), "empty pointer", ESP_FAIL); *(data_bit) = UART[uart_num]->conf0.bit_num; return ESP_OK; } esp_err_t my_uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->conf0.stop_bit_num = stop_bit; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((stop_bit), "empty pointer", ESP_FAIL); (*stop_bit) = UART[uart_num]->conf0.stop_bit_num; return ESP_OK; } esp_err_t my_uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK(((parity_mode == UART_PARITY_DISABLE) || (parity_mode == UART_PARITY_EVEN) || (parity_mode == UART_PARITY_ODD)), "parity_mode error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->conf0.parity = (parity_mode & 0x1); UART[uart_num]->conf0.parity_en = ((parity_mode >> 1) & 0x1); UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((parity_mode), "empty pointer", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); if (UART[uart_num]->conf0.parity_en) { if (UART[uart_num]->conf0.parity) { (*parity_mode) = UART_PARITY_ODD; } else { (*parity_mode) = UART_PARITY_EVEN; } } else { (*parity_mode) = UART_PARITY_DISABLE; } UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->clk_div.val = (uint32_t)(UART_CLK_FREQ / baud_rate) & 0xFFFFF; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((baudrate), "empty pointer", ESP_ERR_INVALID_ARG); (*baudrate) = (UART_CLK_FREQ / (UART[uart_num]->clk_div.val & 0xFFFFF)); return ESP_OK; } esp_err_t my_uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->conf0.val &= ~UART_LINE_INV_MASK; UART[uart_num]->conf0.val |= inverse_mask; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "uart_flow ctrl error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); if (flow_ctrl & UART_HW_FLOWCTRL_RTS) { UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh; UART[uart_num]->conf1.rx_flow_en = 1; } else { UART[uart_num]->conf1.rx_flow_en = 0; } if (flow_ctrl & UART_HW_FLOWCTRL_CTS) { UART[uart_num]->conf0.tx_flow_en = 1; } else { UART[uart_num]->conf0.tx_flow_en = 0; } UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE; if (UART[uart_num]->conf1.rx_flow_en) { val |= UART_HW_FLOWCTRL_RTS; } if (UART[uart_num]->conf0.tx_flow_en) { val |= UART_HW_FLOWCTRL_CTS; } (*flow_ctrl) = val; return ESP_OK; } esp_err_t my_uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_ARG); uint32_t baudrate; uint32_t byte_delay_us = 0; BaseType_t res; portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait; // Take tx_mux res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait); if (res == pdFALSE) { return ESP_ERR_TIMEOUT; } if (false == p_uart_obj[uart_num]->wait_tx_done_flg) { xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_OK; } my_uart_get_baudrate(uart_num, &baudrate); byte_delay_us = (uint32_t)(10000000 / baudrate); // (1/baudrate)*10*1000_000 us ticks_to_wait = ticks_end - xTaskGetTickCount(); // wait for tx done sem. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, ticks_to_wait)) { while (1) { if (UART[uart_num]->status.txfifo_cnt == 0) { ets_delay_us(byte_delay_us); // Delay one byte time to guarantee transmission completion break; } } p_uart_obj[uart_num]->wait_tx_done_flg = false; } else { xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_ERR_TIMEOUT; } xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_OK; } esp_err_t my_uart_enable_swap(void) { // wait for tx done. my_uart_wait_tx_done(UART_NUM_0, portMAX_DELAY); UART_ENTER_CRITICAL(); // MTCK -> UART0_CTS -> U0RXD PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS); // MTD0 -> UART0_RTS -> U0TXD PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UART0_RTS); // enable swap U0TXD <-> UART0_RTS and U0RXD <-> UART0_CTS SET_PERI_REG_MASK(UART_SWAP_REG, 0x4); UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_disable_swap(void) { // wait for tx done. my_uart_wait_tx_done(UART_NUM_0, portMAX_DELAY); UART_ENTER_CRITICAL(); // disable swap U0TXD <-> UART0_RTS and U0RXD <-> UART0_CTS CLEAR_PERI_REG_MASK(UART_SWAP_REG, 0x4); UART_EXIT_CRITICAL(); return ESP_OK; } static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->conf0.rxfifo_rst = 0x1; UART[uart_num]->conf0.rxfifo_rst = 0x0; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_clear_intr_status(uart_port_t uart_num, uint32_t mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->int_clr.val |= mask; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->int_ena.val |= enable_mask; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->int_ena.val &= ~disable_mask; UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_enable_rx_intr(uart_port_t uart_num) { return my_uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA); } esp_err_t my_uart_disable_rx_intr(uart_port_t uart_num) { return my_uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA); } esp_err_t my_uart_disable_tx_intr(uart_port_t uart_num) { return my_uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA); } esp_err_t my_uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); UART[uart_num]->int_clr.txfifo_empty = 1; UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & 0x7f; UART[uart_num]->int_ena.txfifo_empty = enable & 0x1; UART_EXIT_CRITICAL(); return ESP_OK; } static void uart_intr_service(void *arg) { // UART intr process uint32_t uart_num = 0; // read status to get interrupt status for UART0-1 uint32_t uart_intr_status = UART[uart_num]->int_st.val; if (uart_isr_func == NULL) { return; } do { uart_intr_status = UART[uart_num]->int_st.val; if (uart_intr_status != 0) { if (uart_isr_func[uart_num].fn != NULL) { uart_isr_func[uart_num].fn(uart_isr_func[uart_num].args); } } } while (++uart_num < UART_NUM_MAX); } esp_err_t my_uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); _xt_isr_mask(1 << ETS_UART_INUM); _xt_isr_attach(ETS_UART_INUM, uart_intr_service, NULL); uart_isr_func[uart_num].fn = fn; uart_isr_func[uart_num].args = arg; _xt_isr_unmask(1 << ETS_UART_INUM); UART_EXIT_CRITICAL(); return ESP_OK; } esp_err_t my_uart_param_config(uart_port_t uart_num, uart_config_t *uart_conf) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); if (uart_num == UART_NUM_1) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK); } else { PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD); if (uart_conf->flow_ctrl & UART_HW_FLOWCTRL_RTS) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_U0RTS); } if (uart_conf->flow_ctrl & UART_HW_FLOWCTRL_CTS) { PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS); } my_uart_set_hw_flow_ctrl(uart_num, uart_conf->flow_ctrl, uart_conf->rx_flow_ctrl_thresh); } my_uart_set_baudrate(uart_num, uart_conf->baud_rate); my_uart_set_word_length(uart_num, uart_conf->data_bits); my_uart_set_stop_bits(uart_num, uart_conf->stop_bits); my_uart_set_parity(uart_num, uart_conf->parity); uart_reset_rx_fifo(uart_num); return ESP_OK; } esp_err_t my_uart_intr_config(uart_port_t uart_num, uart_intr_config_t *intr_conf) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); my_uart_clear_intr_status(uart_num, UART_INTR_MASK); UART_ENTER_CRITICAL(); UART[uart_num]->int_clr.val = UART_INTR_MASK; if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) { UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & 0x7f); UART[uart_num]->conf1.rx_tout_en = 1; } else { UART[uart_num]->conf1.rx_tout_en = 0; } if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) { UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh; } if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) { UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh; } // my_uart_clear_intr_status(UART[uart_num], mask); UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask; _xt_isr_unmask(0x1 << ETS_UART_INUM); UART_EXIT_CRITICAL(); return ESP_OK; } // internal isr handler for default driver code. static void uart_rx_intr_handler_default(void *param) { uart_obj_t *p_uart = (uart_obj_t *)param; uint8_t uart_num = p_uart->uart_num; uart_dev_t *uart_reg = UART[uart_num]; int rx_fifo_len = uart_reg->status.rxfifo_cnt; uint8_t buf_idx = 0; uint32_t uart_intr_status = UART[uart_num]->int_st.val; uart_event_t uart_event; BaseType_t task_woken = 0; while (uart_intr_status != 0x0) { uart_select_notif_t notify = UART_SELECT_ERROR_NOTIF; buf_idx = 0; uart_event.type = UART_EVENT_MAX; if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) { my_uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M); my_uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M); // TX semaphore will only be used when tx_buf_size is zero. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) { p_uart->tx_waiting_fifo = false; xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &task_woken); if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } else { // We don't use TX ring buffer, because the size is zero. if (p_uart->tx_buf_size == 0) { continue; } int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt; bool en_tx_flg = false; // We need to put a loop here, in case all the buffer items are very short. // That would cause a watch_dog reset because empty interrupt happens so often. // Although this is a loop in ISR, this loop will execute at most 128 turns. while (tx_fifo_rem) { if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) { size_t size; p_uart->tx_head = (uart_tx_data_t *)xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size); if (p_uart->tx_head) { // The first item is the data description // Get the first item to get the data information if (p_uart->tx_len_tot == 0) { p_uart->tx_ptr = NULL; p_uart->tx_len_tot = p_uart->tx_head->tx_data.size; // We have saved the data description from the 1st item, return buffer. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &task_woken); if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } else if (p_uart->tx_ptr == NULL) { // Update the TX item pointer, we will need this to return item to buffer. p_uart->tx_ptr = (uint8_t *)p_uart->tx_head; en_tx_flg = true; p_uart->tx_len_cur = size; } } else { // Can not get data from ring buffer, return; break; } } if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) { // To fill the TX FIFO. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur; for (buf_idx = 0; buf_idx < send_len; buf_idx++) { UART[uart_num]->fifo.rw_byte = *(p_uart->tx_ptr++) & 0xff; } p_uart->tx_len_tot -= send_len; p_uart->tx_len_cur -= send_len; tx_fifo_rem -= send_len; if (p_uart->tx_len_cur == 0) { // Return item to ring buffer. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &task_woken); if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } p_uart->tx_head = NULL; p_uart->tx_ptr = NULL; } if (p_uart->tx_len_tot == 0) { en_tx_flg = false; xSemaphoreGiveFromISR(p_uart->tx_done_sem, &task_woken); if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } else { en_tx_flg = true; } } } if (en_tx_flg) { my_uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M); my_uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M); } } } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) { rx_fifo_len = uart_reg->status.rxfifo_cnt; if (p_uart->rx_buffer_full_flg == false) { // We have to read out all data in RX FIFO to clear the interrupt signal while (buf_idx < rx_fifo_len) { p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte; } // Get the buffer from the FIFO // After Copying the Data From FIFO ,Clear intr_status my_uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M); uart_event.type = UART_DATA; uart_event.size = rx_fifo_len; p_uart->rx_stash_len = rx_fifo_len; // If we fail to push data to ring buffer, we will have to stash the data, and send next time. // Mainly for applications that uses flow control or small ring buffer. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &task_woken)) { my_uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M); uart_event.type = UART_BUFFER_FULL; p_uart->rx_buffer_full_flg = true; // SWO modify // When we cannot write to the ring buffer, we also think that the serial port is "overflow". SetTraceError(DAP_SWO_BUFFER_OVERRUN); } else { p_uart->rx_buffered_len += p_uart->rx_stash_len; xEventGroupSetBitsFromISR(kUART_Monitoe_event_group, UART_GOT_DATA, pdFALSE); } notify = UART_SELECT_READ_NOTIF; if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } else { my_uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M); my_uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M); } } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) { // When fifo overflows, we reset the fifo. uart_reset_rx_fifo(uart_num); uart_reg->int_clr.rxfifo_ovf = 1; uart_event.type = UART_FIFO_OVF; notify = UART_SELECT_ERROR_NOTIF; // SWO modify // Unfortunately, Overflow occurs usually there is no flow control. // Although the overflow situation often occurs, // the buffer stability of the serial port is better, // and there is basically no data loss. ////TODO: Can we get rid of this code? SetTraceError(DAP_SWO_BUFFER_OVERRUN); } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) { uart_reg->int_clr.frm_err = 1; uart_event.type = UART_FRAME_ERR; notify = UART_SELECT_ERROR_NOTIF; // SWO modify SetTraceError(DAP_SWO_STREAM_ERROR); } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) { uart_reg->int_clr.parity_err = 1; uart_event.type = UART_PARITY_ERR; notify = UART_SELECT_ERROR_NOTIF; // SWO modify SetTraceError(DAP_SWO_STREAM_ERROR); } else { uart_reg->int_clr.val = uart_intr_status; // simply clear all other intr status uart_event.type = UART_EVENT_MAX; notify = UART_SELECT_ERROR_NOTIF; // SWO modify SetTraceError(DAP_SWO_STREAM_ERROR); } #ifdef CONFIG_USING_ESP_VFS if (uart_event.type != UART_EVENT_MAX && p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, notify, &task_woken); if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } #else (void)notify; #endif if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) { if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void *)&uart_event, &task_woken)) { ESP_EARLY_LOGV(UART_TAG, "UART event queue full"); } if (task_woken == pdTRUE) { portYIELD_FROM_ISR(); } } uart_intr_status = uart_reg->int_st.val; } } // Fill UART tx_fifo and return a number, // This function by itself is not thread-safe, always call from within a muxed section. static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len) { uint8_t i = 0; uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt; uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt); uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len); for (i = 0; i < copy_cnt; i++) { UART[uart_num]->fifo.rw_byte = buffer[i]; } return copy_cnt; } int my_uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK(buffer, "buffer null", (-1)); if (len == 0) { return 0; } xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); int tx_len = uart_fill_fifo(uart_num, (const char *)buffer, len); xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return tx_len; } static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size) { if (size == 0) { return 0; } size_t original_size = size; // lock for uart_tx xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); p_uart_obj[uart_num]->wait_tx_done_flg = true; if (p_uart_obj[uart_num]->tx_buf_size > 0) { int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf); int offset = 0; uart_tx_data_t evt; evt.tx_data.size = size; evt.type = UART_DATA; xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *)&evt, sizeof(uart_tx_data_t), portMAX_DELAY); while (size > 0) { int send_size = size > max_size / 2 ? max_size / 2 : size; xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *)(src + offset), send_size, portMAX_DELAY); size -= send_size; offset += send_size; my_uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); } } else { while (size) { // semaphore for tx_fifo available if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) { size_t sent = uart_fill_fifo(uart_num, (char *)src, size); if (sent < size) { p_uart_obj[uart_num]->tx_waiting_fifo = true; my_uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); } size -= sent; src += sent; } } xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem); xSemaphoreGive(p_uart_obj[uart_num]->tx_done_sem); } xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return original_size; } int my_uart_write_bytes(uart_port_t uart_num, const char *src, size_t size) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); UART_CHECK(src, "buffer null", (-1)); return uart_tx_all(uart_num, src, size); } int my_uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1)); UART_CHECK((buf), "uart data null", (-1)); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1)); uint8_t *data = NULL; size_t size; size_t copy_len = 0; int len_tmp; if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) { return -1; } while (length) { if (p_uart_obj[uart_num]->rx_cur_remain == 0) { data = (uint8_t *)xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType)ticks_to_wait); if (data) { p_uart_obj[uart_num]->rx_head_ptr = data; p_uart_obj[uart_num]->rx_ptr = data; p_uart_obj[uart_num]->rx_cur_remain = size; } else { xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); return copy_len; } } if (p_uart_obj[uart_num]->rx_cur_remain > length) { len_tmp = length; } else { len_tmp = p_uart_obj[uart_num]->rx_cur_remain; } memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp); UART_ENTER_CRITICAL(); p_uart_obj[uart_num]->rx_buffered_len -= len_tmp; p_uart_obj[uart_num]->rx_ptr += len_tmp; UART_EXIT_CRITICAL(); p_uart_obj[uart_num]->rx_cur_remain -= len_tmp; copy_len += len_tmp; length -= len_tmp; if (p_uart_obj[uart_num]->rx_cur_remain == 0) { vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr); p_uart_obj[uart_num]->rx_head_ptr = NULL; p_uart_obj[uart_num]->rx_ptr = NULL; if (p_uart_obj[uart_num]->rx_buffer_full_flg) { BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); if (res == pdTRUE) { UART_ENTER_CRITICAL(); p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(); my_uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num); } } } } xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); return copy_len; } esp_err_t my_uart_get_buffered_data_len(uart_port_t uart_num, size_t *size) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_ARG); *size = p_uart_obj[uart_num]->rx_buffered_len; return ESP_OK; } esp_err_t my_uart_flush(uart_port_t uart_num) __attribute__((alias("my_uart_flush_input"))); esp_err_t my_uart_flush_input(uart_port_t uart_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_ARG); uart_obj_t *p_uart = p_uart_obj[uart_num]; uint8_t *data; size_t size; // rx sem protect the ring buffer read related functions xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY); my_uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num); while (true) { if (p_uart->rx_head_ptr) { vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr); UART_ENTER_CRITICAL(); p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain; UART_EXIT_CRITICAL(); p_uart->rx_ptr = NULL; p_uart->rx_cur_remain = 0; p_uart->rx_head_ptr = NULL; } data = (uint8_t *)xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType)0); if (data == NULL) { if (p_uart_obj[uart_num]->rx_buffered_len != 0) { ESP_LOGE(UART_TAG, "rx_buffered_len error"); p_uart_obj[uart_num]->rx_buffered_len = 0; } // We also need to clear the `rx_buffer_full_flg` here. UART_ENTER_CRITICAL(); p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(); break; } UART_ENTER_CRITICAL(); p_uart_obj[uart_num]->rx_buffered_len -= size; UART_EXIT_CRITICAL(); vRingbufferReturnItem(p_uart->rx_ring_buf, data); if (p_uart_obj[uart_num]->rx_buffer_full_flg) { BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); if (res == pdTRUE) { UART_ENTER_CRITICAL(); p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(); } } } p_uart->rx_ptr = NULL; p_uart->rx_cur_remain = 0; p_uart->rx_head_ptr = NULL; uart_reset_rx_fifo(uart_num); my_uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num); xSemaphoreGive(p_uart->rx_mux); return ESP_OK; } esp_err_t my_uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int no_use) { esp_err_t r; UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((rx_buffer_size > UART_FIFO_LEN) || ((uart_num == UART_NUM_1) && (rx_buffer_size == 0)), "uart rx buffer length error(>128)", ESP_ERR_INVALID_ARG); UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_ERR_INVALID_ARG); UART_CHECK((queue_size >= 0), "queue_size error(>=0)", ESP_ERR_INVALID_ARG); if (p_uart_obj[uart_num] == NULL) { p_uart_obj[uart_num] = (uart_obj_t *)calloc(1, sizeof(uart_obj_t)); if (p_uart_obj[uart_num] == NULL) { ESP_LOGE(UART_TAG, "UART driver malloc error"); return ESP_FAIL; } p_uart_obj[uart_num]->uart_num = uart_num; p_uart_obj[uart_num]->uart_mode = UART_MODE_UART; p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary(); p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary(); xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem); p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex(); p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex(); p_uart_obj[uart_num]->queue_size = queue_size; p_uart_obj[uart_num]->tx_ptr = NULL; p_uart_obj[uart_num]->tx_head = NULL; p_uart_obj[uart_num]->tx_len_tot = 0; p_uart_obj[uart_num]->rx_buffered_len = 0; p_uart_obj[uart_num]->wait_tx_done_flg = false; if (uart_queue) { p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t)); *uart_queue = p_uart_obj[uart_num]->xQueueUart; ESP_LOGI(UART_TAG, "queue free spaces: %d", (int)uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart)); } else { p_uart_obj[uart_num]->xQueueUart = NULL; } p_uart_obj[uart_num]->rx_buffer_full_flg = false; p_uart_obj[uart_num]->tx_waiting_fifo = false; p_uart_obj[uart_num]->rx_ptr = NULL; p_uart_obj[uart_num]->rx_cur_remain = 0; p_uart_obj[uart_num]->rx_head_ptr = NULL; p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF); p_uart_obj[uart_num]->rx_buf_size = rx_buffer_size; if (tx_buffer_size > 0) { p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT); p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size; } else { p_uart_obj[uart_num]->tx_ring_buf = NULL; p_uart_obj[uart_num]->tx_buf_size = 0; } p_uart_obj[uart_num]->uart_select_notif_callback = NULL; } else { ESP_LOGE(UART_TAG, "UART driver already installed"); return ESP_FAIL; } r = my_uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num]); if (r != ESP_OK) { goto err; } uart_intr_config_t uart_intr = { .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M | UART_FRM_ERR_INT_ENA_M | UART_RXFIFO_OVF_INT_ENA_M, .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT, .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT, .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT}; r = my_uart_intr_config(uart_num, &uart_intr); if (r != ESP_OK) { goto err; } return r; err: ESP_LOGE(UART_TAG, "driver install error"); my_uart_driver_delete(uart_num); return r; } // Make sure no other tasks are still using UART before you call this function esp_err_t my_uart_driver_delete(uart_port_t uart_num) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); if (p_uart_obj[uart_num] == NULL) { ESP_LOGI(UART_TAG, "ALREADY NULL"); return ESP_OK; } my_uart_disable_rx_intr(uart_num); my_uart_disable_tx_intr(uart_num); _xt_isr_mask(0x1 << ETS_UART_INUM); if (p_uart_obj[uart_num]->tx_fifo_sem) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem); p_uart_obj[uart_num]->tx_fifo_sem = NULL; } if (p_uart_obj[uart_num]->tx_done_sem) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem); p_uart_obj[uart_num]->tx_done_sem = NULL; } if (p_uart_obj[uart_num]->tx_mux) { vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux); p_uart_obj[uart_num]->tx_mux = NULL; } if (p_uart_obj[uart_num]->rx_mux) { vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux); p_uart_obj[uart_num]->rx_mux = NULL; } if (p_uart_obj[uart_num]->xQueueUart) { vQueueDelete(p_uart_obj[uart_num]->xQueueUart); p_uart_obj[uart_num]->xQueueUart = NULL; } if (p_uart_obj[uart_num]->rx_ring_buf) { vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf); p_uart_obj[uart_num]->rx_ring_buf = NULL; } if (p_uart_obj[uart_num]->tx_ring_buf) { vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf); p_uart_obj[uart_num]->tx_ring_buf = NULL; } free(p_uart_obj[uart_num]); p_uart_obj[uart_num] = NULL; return ESP_OK; } void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback) { if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) { p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t)uart_select_notif_callback; } } esp_err_t my_uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh) { UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG); UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG); UART_ENTER_CRITICAL(); // The tout_thresh = 1, defines TOUT interrupt timeout equal to // transmission time of one symbol (~11 bit) on current baudrate if (tout_thresh > 0) { UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & 0x7f); UART[uart_num]->conf1.rx_tout_en = 1; } else { UART[uart_num]->conf1.rx_tout_en = 0; } UART_EXIT_CRITICAL(); return ESP_OK; }