/* * Copyright (c) 2013-2017 ARM Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ---------------------------------------------------------------------- * * $Date: 1. December 2017 * $Revision: V2.0.0 * * Project: CMSIS-DAP Configuration * Title: DAP_config.h CMSIS-DAP Configuration File (Template) * *---------------------------------------------------------------------------*/ #ifndef __DAP_CONFIG_H__ #define __DAP_CONFIG_H__ #include #include #include "cmsis_compiler.h" #include "gpio.h" #include "gpio_struct.h" #include "timer_struct.h" #include "esp8266/pin_mux_register.h" #include "spi_switch.h" #include "dap_configuration.h" //************************************************************************************************** /** \defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information \ingroup DAP_ConfigIO_gr @{ Provides definitions about the hardware and configuration of the Debug Unit. This information includes: - Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit. - Debug Unit Identification strings (Vendor, Product, Serial Number). - Debug Unit communication packet size. - Debug Access Port supported modes and settings (JTAG/SWD and SWO). - Optional information about a connected Target Device (for Evaluation Boards). */ //#ifdef _RTE_ //#include "RTE_Components.h" //#include CMSIS_device_header //#else //#include "device.h" // Debug Unit Cortex-M Processor Header File //#endif /// Processor Clock of the Cortex-M MCU used in the Debug Unit. /// This value is used to calculate the SWD/JTAG clock speed. #define CPU_CLOCK 160000000 ///< Specifies the CPU Clock in Hz. // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<160MHz // This value is used to replace the largest 10MHZ speed clock in Keil #define MAX_USER_CLOCK 16000000 ///< Specifies the max Debug Clock in Hz. /// Number of processor cycles for I/O Port write operations. /// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O /// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors /// require 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses /// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be /// required. #define IO_PORT_WRITE_CYCLES 2U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0. /// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port. /// This information is returned by the command \ref DAP_Info as part of Capabilities. #define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available. /// Indicate that JTAG communication mode is available at the Debug Port. /// This information is returned by the command \ref DAP_Info as part of Capabilities. #define DAP_JTAG 1 ///< JTAG Mode: 1 = available, 0 = not available. /// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port. /// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255. #define DAP_JTAG_DEV_CNT 8U ///< Maximum number of JTAG devices on scan chain. /// Default communication mode on the Debug Access Port. /// Used for the command \ref DAP_Connect when Port Default mode is selected. #define DAP_DEFAULT_PORT 1U ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG. /// Default communication speed on the Debug Access Port for SWD and JTAG mode. /// Used to initialize the default SWD/JTAG clock frequency. /// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting. #define DAP_DEFAULT_SWJ_CLOCK 1000000U ///< Default SWD/JTAG clock frequency in Hz. // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<1MHz /// Maximum Package Buffers for Command and Response data. /// This configuration settings is used to optimize the communication performance with the /// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the /// setting can be reduced (valid range is 1 .. 255). #define DAP_PACKET_COUNT 255 ///< Specifies number of packets buffered. /// Indicate that UART Serial Wire Output (SWO) trace is available. /// This information is returned by the command \ref DAP_Info as part of Capabilities. #define SWO_UART 0 ///< SWO UART: 1 = available, 0 = not available. /// Maximum SWO UART Baudrate. #define SWO_UART_MAX_BAUDRATE (115200U * 40U) ///< SWO UART Maximum Baudrate in Hz. // <<<<<<<<<<<<<<<<<<<<<<<<<<<<< 5MHz //// TODO: uncertain value /// Indicate that Manchester Serial Wire Output (SWO) trace is available. /// This information is returned by the command \ref DAP_Info as part of Capabilities. #define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available. /// SWO Trace Buffer Size. #define SWO_BUFFER_SIZE 4096U ///< SWO Trace Buffer Size in bytes (must be 2^n). /// SWO Streaming Trace. #define SWO_STREAM 0 ///< SWO Streaming Trace: 1 = available, 0 = not available. /// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET. #define TIMESTAMP_CLOCK 5000000U ///< Timestamp clock in Hz (0 = timestamps not supported). // <<<<<<<<<<<<<<<<<<<<<5MHz /// Debug Unit is connected to fixed Target Device. /// The Debug Unit may be part of an evaluation board and always connected to a fixed /// known device. In this case a Device Vendor and Device Name string is stored which /// may be used by the debugger or IDE to configure device parameters. #define TARGET_DEVICE_FIXED 0 ///< Target Device: 1 = known, 0 = unknown; #if TARGET_DEVICE_FIXED #define TARGET_DEVICE_VENDOR "ARM" ///< String indicating the Silicon Vendor #define TARGET_DEVICE_NAME "Cortex-M4" ///< String indicating the Target Device #endif /** * @brief Get Vendor ID string. * * @param str Pointer to buffer to store the string. * @return String length. */ __STATIC_INLINE uint8_t DAP_GetVendorString(char *str) { ////TODO: fill this // In fact, Keil can get the corresponding information through USB // without filling in this information. // (void)str; strcpy(str, "windowsair"); return (sizeof("windowsair")); } /** * @brief Get Product ID string. * * @param str Pointer to buffer to store the string. * @return String length. */ __STATIC_INLINE uint8_t DAP_GetProductString(char *str) { //(void)str; strcpy(str, "CMSIS-DAP v2"); return (sizeof("CMSIS-DAP v2")); } /** * @brief Get Serial Number string. * * @param str Pointer to buffer to store the string. * @return String length. */ __STATIC_INLINE uint8_t DAP_GetSerNumString(char *str) { strcpy(str, "1234"); return (sizeof("1234")); } ///@} // Modify your pins here // ATTENTION: DO NOT USE RTC GPIO16 #define PIN_SWDIO 12 #define PIN_SWDIO_MOSI 13 // SPI MOSI #define PIN_SWCLK 14 #define PIN_TDO 4 #define PIN_TDI 0 #define PIN_nTRST 0 // optional #define PIN_nRESET 5 // LED_BUILTIN #define PIN_LED_CONNECTED 2 // LED_BUILTIN #define PIN_LED_RUNNING 15 //************************************************************************************************** /** \defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access \ingroup DAP_ConfigIO_gr @{ Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug interface of a device. The following I/O Pins are provided: JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode ---------------------------- | -------------------- | --------------------------------------------- TCK: Test Clock | SWCLK: Clock | Output Push/Pull TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data) TDI: Test Data Input | | Output Push/Pull TDO: Test Data Output | | Input nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor DAP Hardware I/O Pin Access Functions ------------------------------------- The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to these I/O Pins. For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only. This functions are provided to achieve faster I/O that is possible with some advanced GPIO peripherals that can independently write/read a single I/O pin without affecting any other pins of the same I/O port. The following SWDIO I/O Pin functions are provided: - \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware. - \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware. - \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed. - \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed. */ /** * @brief Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET. * Configures the DAP Hardware I/O pins for JTAG mode: * - TCK, TMS, TDI, nTRST, nRESET to ***output*** mode and set to high level. * - TDO to ***input*** mode. * */ __STATIC_INLINE void PORT_JTAG_SETUP(void) { gpio_pin_reg_t pin_reg; // gpio_set_direction(PIN_SWCLK, GPIO_MODE_OUTPUT); // gpio_set_direction(PIN_SWDIO, GPIO_MODE_OUTPUT); GPIO.enable_w1ts |= (0x1 << PIN_SWCLK); GPIO.pin[PIN_SWCLK].driver = 0; pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_SWCLK)); pin_reg.pullup = 0; WRITE_PERI_REG(GPIO_PIN_REG(PIN_SWCLK), pin_reg.val); GPIO.enable_w1ts |= (0x1 << PIN_SWDIO); GPIO.pin[PIN_SWDIO].driver = 0; pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_SWDIO)); pin_reg.pullup = 0; WRITE_PERI_REG(GPIO_PIN_REG(PIN_SWDIO), pin_reg.val); // gpio_set_direction(PIN_TDO, GPIO_MODE_DEF_INPUT); GPIO.enable_w1tc |= (0x1 << PIN_TDO); GPIO.pin[PIN_TDO].driver = 0; pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_TDO)); pin_reg.pullup = 0; WRITE_PERI_REG(GPIO_PIN_REG(PIN_TDO), pin_reg.val); // gpio_set_direction(PIN_TDI, GPIO_MODE_OUTPUT); GPIO.enable_w1ts |= (0x1 << PIN_TDI); GPIO.pin[PIN_TDI].driver = 0; pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_TDI)); pin_reg.pullup = 0; WRITE_PERI_REG(GPIO_PIN_REG(PIN_TDI), pin_reg.val); // gpio_set_direction(PIN_nTRST, GPIO_MODE_OUTPUT_OD); // gpio_set_direction(PIN_nRESET, GPIO_MODE_OUTPUT_OD); GPIO.enable_w1tc |= (0x1 << PIN_nTRST); GPIO.pin[PIN_nTRST].driver = 1; GPIO.enable_w1tc |= (0x1 << PIN_nRESET); GPIO.pin[PIN_nRESET].driver = 1; // gpio_set_pull_mode(PIN_nTRST, GPIO_PULLUP_ONLY); // gpio_set_pull_mode(PIN_nRESET, GPIO_PULLUP_ONLY); pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_nTRST)); pin_reg.pullup = 1; WRITE_PERI_REG(GPIO_PIN_REG(PIN_nTRST), pin_reg.val); pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_nRESET)); pin_reg.pullup = 1; WRITE_PERI_REG(GPIO_PIN_REG(PIN_nRESET), pin_reg.val); } /** * @brief Setup SWD I/O pins: SWCLK, SWDIO, and nRESET. * Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode: * - SWCLK, SWDIO, nRESET to output mode and set to default high level. * - TDI, nTRST to HighZ mode (pins are unused in SWD mode). * */ __STATIC_INLINE void PORT_SWD_SETUP(void) { gpio_pin_reg_t pin_reg; // PIN_SWCLK -> OUTPUT // PIN_SWDIO -> OUTPUT // GPIO.enable_w1ts |= (0x1 << PIN_SWCLK); // GPIO.pin[PIN_SWCLK].driver = 0; // pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_SWCLK)); // pin_reg.pullup = 0; // WRITE_PERI_REG(GPIO_PIN_REG(PIN_SWCLK), pin_reg.val); // GPIO.enable_w1ts |= (0x1 << PIN_SWDIO); // GPIO.pin[PIN_SWDIO].driver = 0; // pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_SWDIO)); // pin_reg.pullup = 0; // WRITE_PERI_REG(GPIO_PIN_REG(PIN_SWDIO), pin_reg.val); DAP_SPI_Disable(); GPIO.out_w1tc |= (0x1 << PIN_SWCLK); GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI); // gpio_set_direction(PIN_TDO, GPIO_MODE_DEF_INPUT); GPIO.enable_w1tc |= (0x1 << PIN_TDO); GPIO.pin[PIN_TDO].driver = 0; pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_TDO)); pin_reg.pullup = 0; WRITE_PERI_REG(GPIO_PIN_REG(PIN_TDO), pin_reg.val); // gpio_set_direction(PIN_TDI, GPIO_MODE_OUTPUT); GPIO.enable_w1ts |= (0x1 << PIN_TDI); GPIO.pin[PIN_TDI].driver = 0; pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_TDI)); pin_reg.pullup = 0; WRITE_PERI_REG(GPIO_PIN_REG(PIN_TDI), pin_reg.val); // gpio_set_direction(PIN_nTRST, GPIO_MODE_OUTPUT_OD); // gpio_set_direction(PIN_nRESET, GPIO_MODE_OUTPUT_OD); GPIO.enable_w1tc |= (0x1 << PIN_nTRST); GPIO.pin[PIN_nTRST].driver = 1; GPIO.enable_w1tc |= (0x1 << PIN_nRESET); GPIO.pin[PIN_nRESET].driver = 1; // gpio_set_pull_mode(PIN_nTRST, GPIO_PULLUP_ONLY); // gpio_set_pull_mode(PIN_nRESET, GPIO_PULLUP_ONLY); pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_nTRST)); pin_reg.pullup = 1; WRITE_PERI_REG(GPIO_PIN_REG(PIN_nTRST), pin_reg.val); pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_nRESET)); pin_reg.pullup = 1; WRITE_PERI_REG(GPIO_PIN_REG(PIN_nRESET), pin_reg.val); } /** * @brief Disable JTAG/SWD I/O Pins. * Disables the DAP Hardware I/O pins which configures: * - TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode. * */ __STATIC_INLINE void PORT_OFF(void) { // Will be called when the DAP disconnected // gpio_set_direction(PIN_SWCLK, GPIO_MODE_DEF_DISABLE); // gpio_set_direction(PIN_SWDIO, GPIO_MODE_DEF_DISABLE); // gpio_set_direction(PIN_TDO, GPIO_MODE_DEF_DISABLE); // gpio_set_direction(PIN_TDI, GPIO_MODE_DEF_DISABLE); // gpio_set_direction(PIN_nTRST, GPIO_MODE_DEF_DISABLE); // gpio_set_direction(PIN_nRESET, GPIO_MODE_DEF_DISABLE); // GPIO.pin[PIN_SWCLK].driver = 0; // GPIO.enable_w1tc |= (0x1 << PIN_SWCLK); // GPIO.pin[PIN_SWDIO].driver = 0; // GPIO.enable_w1tc |= (0x1 << PIN_SWDIO); // GPIO.pin[PIN_SWDIO].driver = 0; // GPIO.enable_w1tc |= (0x1 << PIN_SWDIO_MOSI); DAP_SPI_Disable(); GPIO.out_w1tc |= (0x1 << PIN_SWCLK); GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI); GPIO.pin[PIN_TDO].driver = 0; GPIO.enable_w1tc |= (0x1 << PIN_TDO); GPIO.pin[PIN_TDI].driver = 0; GPIO.enable_w1tc |= (0x1 << PIN_TDI); GPIO.pin[PIN_nTRST].driver = 0; GPIO.enable_w1tc |= (0x1 << PIN_nTRST); GPIO.pin[PIN_nRESET].driver = 0; GPIO.enable_w1tc |= (0x1 << PIN_nRESET); } // SWCLK/TCK I/O pin ------------------------------------- /** * @brief SWCLK/TCK I/O pin: Get Input. * * @return Current status of the SWCLK/TCK DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN(void) { ////TODO: can we set to 0? return 0; } /** * @brief SWCLK/TCK I/O pin: Set Output to High. * * Set the SWCLK/TCK DAP hardware I/O pin to high level. */ __STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET(void) { GPIO.out_w1ts |= (0x1 << PIN_SWCLK); } /** * @brief SWCLK/TCK I/O pin: Set Output to Low. * * Set the SWCLK/TCK DAP hardware I/O pin to low level. */ __STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR(void) { GPIO.out_w1tc |= (0x1 << PIN_SWCLK); } // SWDIO/TMS Pin I/O -------------------------------------- /** * @brief SWDIO/TMS I/O pin: Get Input. * * @return Current status of the SWDIO/TMS DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN(void) { return ((GPIO.in >> PIN_SWDIO) & 0x1) ? 1 : 0; } /** * @brief SWDIO/TMS I/O pin: Set Output to High. * * Set the SWDIO/TMS DAP hardware I/O pin to high level. */ __STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET(void) { GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI); } /** * @brief SWDIO/TMS I/O pin: Set Output to Low. * * Set the SWDIO/TMS DAP hardware I/O pin to low level. */ __STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR(void) { GPIO.out_w1tc |= (0x1 << PIN_SWDIO_MOSI); } /** * @brief SWDIO I/O pin: Get Input (used in SWD mode only). * * @return Current status of the SWDIO DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN(void) { return ((GPIO.in >> PIN_SWDIO) & 0x1) ? 1 : 0; } /** * @brief SWDIO I/O pin: Set Output (used in SWD mode only). * * @param bit Output value for the SWDIO DAP hardware I/O pin. * */ __STATIC_FORCEINLINE void PIN_SWDIO_OUT(uint32_t bit) { /** * Important: Use only one bit (bit0) of param! * Sometimes the func "SWD_TransferFunction" of SW_DP.c will * issue "2" as param instead of "0". Zach Lee */ if ((bit & 1U) == 1) { //set bit GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI); } else { //reset bit GPIO.out_w1tc |= (0x1 << PIN_SWDIO_MOSI); } } /** * @brief SWDIO I/O pin: Switch to Output mode (used in SWD mode only). * Configure the SWDIO DAP hardware I/O pin to output mode. This function is * called prior \ref PIN_SWDIO_OUT function calls. */ __STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE(void) { // Need fast response //// TODO: low speed // set \ref gpio_set_direction -> OUTPUT // GPIO.enable_w1ts |= (0x1 << PIN_SWDIO_MOSI); // GPIO.pin[PIN_SWDIO_MOSI].driver = 0; do {}while (0); } /** * @brief SWDIO I/O pin: Switch to Input mode (used in SWD mode only). * Configure the SWDIO DAP hardware I/O pin to input mode. This function is * called prior \ref PIN_SWDIO_IN function calls. */ __STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE(void) { // Need fast response // set \ref gpio_set_dircetion -> INPUT // esp8266 input is always connected // GPIO.enable_w1tc |= (0x1 << PIN_SWDIO_MOSI); // GPIO.pin[PIN_SWDIO_MOSI].driver = 0; GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI); } // TDI Pin I/O --------------------------------------------- /** * @brief TDI I/O pin: Get Input. * * @return Current status of the TDI DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_TDI_IN(void) { return ((GPIO.in >> PIN_TDI) & 0x1) ? 1 : 0; } /** * @brief TDI I/O pin: Set Output. * * @param bit Output value for the TDI DAP hardware I/O pin. * */ __STATIC_FORCEINLINE void PIN_TDI_OUT(uint32_t bit) { if ((bit & 1U) == 1) { //set bit GPIO.out_w1ts |= (0x1 << PIN_TDI); } else { //reset bit GPIO.out_w1tc |= (0x1 << PIN_TDI); } } // TDO Pin I/O --------------------------------------------- /** * @brief TDO I/O pin: Get Input. * * @return Current status of the TDO DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_TDO_IN(void) { return ((GPIO.in >> PIN_TDO) & 0x1) ? 1 : 0; } // nTRST Pin I/O ------------------------------------------- /** * @brief nTRST I/O pin: Get Input. * * @return Current status of the nTRST DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_nTRST_IN(void) { return 0; // not available } /** * @brief nTRST I/O pin: Set Output. * * @param bit JTAG TRST Test Reset pin status: * - 0: issue a JTAG TRST Test Reset. - 1: release JTAG TRST Test Reset. */ __STATIC_FORCEINLINE void PIN_nTRST_OUT(uint32_t bit) { // Vendor reset sequence ; // not available } // nRESET Pin I/O------------------------------------------ /** * @brief nRESET I/O pin: Get Input. * * @return Current status of the nRESET DAP hardware I/O pin. */ __STATIC_FORCEINLINE uint32_t PIN_nRESET_IN(void) { return ((GPIO.in >> PIN_nRESET) & 0x1) ? 1 : 0; } /** * @brief nRESET I/O pin: Set Output. * * @param bit target device hardware reset pin status: * - 0: issue a device hardware reset. * - 1: release device hardware reset. */ __STATIC_FORCEINLINE void PIN_nRESET_OUT(uint32_t bit) { // Vendor reset sequence //// FIXME: unavailable if ((bit & 1U) == 1) { //set bit GPIO.out_w1ts |= (0x1 << PIN_nRESET); } else { //reset bit GPIO.out_w1tc |= (0x1 << PIN_nRESET); } } ///@} //************************************************************************************************** /** \defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs \ingroup DAP_ConfigIO_gr @{ CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit. It is recommended to provide the following LEDs for status indication: - Connect LED: is active when the DAP hardware is connected to a debugger. - Running LED: is active when the debugger has put the target device into running state. */ /** Debug Unit: Set status of Connected LED. \param bit status of the Connect LED. - 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit. - 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit. */ /** * @brief Debug Unit: Set status of Connected LED. * * @param bit status of the Connect LED. * - 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit. * - 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit. */ __STATIC_INLINE void LED_CONNECTED_OUT(uint32_t bit) { if (bit) { //set bit GPIO.out_w1ts |= (0x1 << PIN_LED_CONNECTED); } else { //reset bit GPIO.out_w1tc |= (0x1 << PIN_LED_CONNECTED); } } /** * @brief Debug Unit: Set status Target Running LED. * * @param bit status of the Target Running LED. * - 1: Target Running LED ON: program execution in target started. * - 0: Target Running LED OFF: program execution in target stopped. */ __STATIC_INLINE void LED_RUNNING_OUT(uint32_t bit) { if (bit) { //set bit GPIO.out_w1ts |= (0x1 << PIN_LED_RUNNING); } else { //reset bit GPIO.out_w1tc |= (0x1 << PIN_LED_RUNNING); } } ///@} //************************************************************************************************** /** \defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp \ingroup DAP_ConfigIO_gr @{ Access function for Test Domain Timer. The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET. By default, the DWT timer is used. The frequency of this timer is configured with \ref TIMESTAMP_CLOCK. */ /** * @brief Get timestamp of Test Domain Timer. * * @return Current timestamp value. */ __STATIC_INLINE uint32_t TIMESTAMP_GET(void) { // FRC1 is a 23-bit countdown timer return (0x7FFFFF - (frc1.count.data)); } ///@} //************************************************************************************************** /** \defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization \ingroup DAP_ConfigIO_gr @{ CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP. */ /** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized). This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set: - I/O clock system enabled. - all I/O pins: input buffer enabled, output pins are set to HighZ mode. - for nTRST, nRESET a weak pull-up (if available) is enabled. - LED output pins are enabled and LEDs are turned off. */ __STATIC_INLINE void DAP_SETUP(void) { DAP_SPI_Init(); DAP_SPI_Disable(); // This function maybe unnecessary... // gpio_set_direction(PIN_SWCLK, GPIO_MODE_DEF_INPUT); // gpio_set_direction(PIN_SWDIO, GPIO_MODE_DEF_INPUT); // gpio_set_direction(PIN_nRESET, GPIO_MODE_DEF_INPUT); // gpio_set_direction(PIN_TDI, GPIO_MODE_DEF_INPUT); gpio_set_direction(PIN_TDO, GPIO_MODE_DEF_INPUT); // Configure: LED as output (turned off) gpio_set_direction(PIN_LED_CONNECTED, GPIO_MODE_DEF_OUTPUT); LED_CONNECTED_OUT(0); gpio_set_direction(PIN_LED_RUNNING, GPIO_MODE_DEF_OUTPUT); LED_RUNNING_OUT(0); PORT_OFF(); } /** Reset Target Device with custom specific I/O pin or command sequence. This function allows the optional implementation of a device specific reset sequence. It is called when the command \ref DAP_ResetTarget and is for example required when a device needs a time-critical unlock sequence that enables the debug port. \return 0 = no device specific reset sequence is implemented.\n 1 = a device specific reset sequence is implemented. */ __STATIC_INLINE uint8_t RESET_TARGET(void) { return (0U); // not available } ///@} #endif /* __DAP_CONFIG_H__ */