0
0
Fork 0
wireless-proxy-esp32/components/DAP/config/DAP_config.h

810 lines
25 KiB
C

/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Configuration
* Title: DAP_config.h CMSIS-DAP Configuration File (Template)
*
*---------------------------------------------------------------------------*/
/**
* @file DAP_config.h
* @author windowsair
* @brief Adaptation of GPIO and SPI pin
* @change: 2021-2-10 Support GPIO and SPI
* 2021-2-18 Try to support SWO
* @version 0.1
* @date 2021-2-10
*
* @copyright Copyright (c) 2021
*
*/
#ifndef __DAP_CONFIG_H__
#define __DAP_CONFIG_H__
#include <stdint.h>
#include <string.h>
#include "main/dap_configuration.h"
#include "main/wifi_configuration.h"
#include "main/timer.h"
#include "components/DAP/include/cmsis_compiler.h"
#include "components/DAP/include/gpio_op.h"
#include "components/DAP/include/spi_switch.h"
#ifdef CONFIG_IDF_TARGET_ESP8266
#include "gpio.h"
#include "esp8266/include/esp8266/gpio_struct.h"
#include "esp8266/pin_mux_register.h"
#elif defined CONFIG_IDF_TARGET_ESP32
#else
#error unknown hardware
#endif
//**************************************************************************************************
/**
\defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information
\ingroup DAP_ConfigIO_gr
@{
Provides definitions about the hardware and configuration of the Debug Unit.
This information includes:
- Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit.
- Debug Unit Identification strings (Vendor, Product, Serial Number).
- Debug Unit communication packet size.
- Debug Access Port supported modes and settings (JTAG/SWD and SWO).
- Optional information about a connected Target Device (for Evaluation Boards).
*/
//#ifdef _RTE_
//#include "RTE_Components.h"
//#include CMSIS_device_header
//#else
//#include "device.h" // Debug Unit Cortex-M Processor Header File
//#endif
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
#ifdef CONFIG_IDF_TARGET_ESP8266
#define CPU_CLOCK 160000000 ///< Specifies the CPU Clock in Hz.
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<160MHz
#elif defined CONFIG_IDF_TARGET_ESP32
#define CPU_CLOCK 240000000
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<240MHz
#endif
//#define MAX_USER_CLOCK 16000000 ///< Specifies the max Debug Clock in Hz.
/// Number of processor cycles for I/O Port write operations.
/// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O
/// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors
/// require 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses
/// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be
/// required.
#define IO_PORT_WRITE_CYCLES 2U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0.
/// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available.
/// Indicate that JTAG communication mode is available at the Debug Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_JTAG 1 ///< JTAG Mode: 1 = available, 0 = not available.
/// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port.
/// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255.
#define DAP_JTAG_DEV_CNT 8U ///< Maximum number of JTAG devices on scan chain.
/// Default communication mode on the Debug Access Port.
/// Used for the command \ref DAP_Connect when Port Default mode is selected.
#define DAP_DEFAULT_PORT 1U ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG.
/// Default communication speed on the Debug Access Port for SWD and JTAG mode.
/// Used to initialize the default SWD/JTAG clock frequency.
/// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting.
#define DAP_DEFAULT_SWJ_CLOCK 1000000U ///< Default SWD/JTAG clock frequency in Hz.
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<<1MHz
/// Maximum Package Buffers for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the
/// setting can be reduced (valid range is 1 .. 255).
#define DAP_PACKET_COUNT 255 ///< Specifies number of packets buffered.
/// Indicates that the SWO function(UART SWO & Streaming Trace) is available
#define SWO_FUNCTION_ENABLE 0 ///< SWO function: 1 = available, 0 = not available.
/// Indicate that UART Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_UART SWO_FUNCTION_ENABLE ///< SWO UART: 1 = available, 0 = not available.
/// Maximum SWO UART Baudrate.
#define SWO_UART_MAX_BAUDRATE (115200U * 40U) ///< SWO UART Maximum Baudrate in Hz.
// <<<<<<<<<<<<<<<<<<<<<<<<<<<<< 5MHz
//// TODO: uncertain value
/// Indicate that Manchester Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available.
// (windowsair)Do not modify. Not support.
/// SWO Trace Buffer Size.
#define SWO_BUFFER_SIZE 2048U ///< SWO Trace Buffer Size in bytes (must be 2^n).
/// SWO Streaming Trace.
#define SWO_STREAM SWO_FUNCTION_ENABLE ///< SWO Streaming Trace: 1 = available, 0 = not available.
/// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET.
#define TIMESTAMP_CLOCK 5000000U ///< Timestamp clock in Hz (0 = timestamps not supported).
// <<<<<<<<<<<<<<<<<<<<<5MHz
/// Debug Unit is connected to fixed Target Device.
/// The Debug Unit may be part of an evaluation board and always connected to a fixed
/// known device. In this case a Device Vendor and Device Name string is stored which
/// may be used by the debugger or IDE to configure device parameters.
#define TARGET_DEVICE_FIXED 0 ///< Target Device: 1 = known, 0 = unknown;
#if TARGET_DEVICE_FIXED
#define TARGET_DEVICE_VENDOR "ARM" ///< String indicating the Silicon Vendor
#define TARGET_DEVICE_NAME "Cortex-M4" ///< String indicating the Target Device
#endif
/**
* @brief Get Vendor ID string.
*
* @param str Pointer to buffer to store the string.
* @return String length.
*/
__STATIC_INLINE uint8_t DAP_GetVendorString(char *str)
{
// In fact, Keil can get the corresponding information through USB
// without filling in this information.
// (void)str;
strcpy(str, "windowsair");
return (sizeof("windowsair"));
}
/**
* @brief Get Product ID string.
*
* @param str Pointer to buffer to store the string.
* @return String length.
*/
__STATIC_INLINE uint8_t DAP_GetProductString(char *str)
{
//(void)str;
strcpy(str, "CMSIS-DAP v2");
return (sizeof("CMSIS-DAP v2"));
}
/**
* @brief Get Serial Number string.
*
* @param str Pointer to buffer to store the string.
* @return String length.
*/
__STATIC_INLINE uint8_t DAP_GetSerNumString(char *str)
{
strcpy(str, "1234");
return (sizeof("1234"));
}
///@}
// Note: DO NOT modify these pins: PIN_SWDIO PIN_SWDIO_MOSI PIN_SWCLK
// Modify the following pins carefully: PIN_TDO
#ifdef CONFIG_IDF_TARGET_ESP8266
#define PIN_SWDIO 12 // SPI MISO
#define PIN_SWDIO_MOSI 13 // SPI MOSI
#define PIN_SWCLK 14
#define PIN_TDO 16 // device TDO -> Host Data Input (use RTC pin 16)
#define PIN_TDI 4
#define PIN_nTRST 0 // optional
#define PIN_nRESET 5
// LED_BUILTIN
#define PIN_LED_CONNECTED 2
// LED_BUILTIN
#define PIN_LED_RUNNING _ // won't be used
#elif defined CONFIG_IDF_TARGET_ESP32
#define PIN_SWDIO 12 // SPI MISO
#define PIN_SWDIO_MOSI 13 // SPI MOSI
#define PIN_SWCLK 14
#define PIN_TDO 19 // device TDO -> Host Data Input ~~~(use RTC pin 16)~~~
#define PIN_TDI 18
#define PIN_nTRST 25 // optional
#define PIN_nRESET 26
// LED_BUILTIN
#define PIN_LED_CONNECTED 27
// LED_BUILTIN
#define PIN_LED_RUNNING _ // won't be used
#endif
//**************************************************************************************************
/**
\defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access
\ingroup DAP_ConfigIO_gr
@{
Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode
and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug
interface of a device. The following I/O Pins are provided:
JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode
---------------------------- | -------------------- | ---------------------------------------------
TCK: Test Clock | SWCLK: Clock | Output Push/Pull
TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data)
TDI: Test Data Input | | Output Push/Pull
TDO: Test Data Output | | Input
nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor
nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor
DAP Hardware I/O Pin Access Functions
-------------------------------------
The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to
these I/O Pins.
For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only.
This functions are provided to achieve faster I/O that is possible with some advanced GPIO
peripherals that can independently write/read a single I/O pin without affecting any other pins
of the same I/O port. The following SWDIO I/O Pin functions are provided:
- \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware.
- \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware.
- \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed.
- \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed.
*/
/**
* @brief Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET.
* Configures the DAP Hardware I/O pins for JTAG mode:
* - TCK, TMS, TDI, nTRST, nRESET to ***output*** mode and set to high level.
* - TDO to ***input*** mode.
*
*/
#ifdef CONFIG_IDF_TARGET_ESP8266
__STATIC_INLINE void PORT_JTAG_SETUP(void)
{
gpio_pin_reg_t pin_reg;
// set TCK, TMS pin
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, FUNC_GPIO14); // GPIO14 is SPI CLK pin (Clock)
GPIO.enable_w1ts |= (0x1 << 14); // PP Output
pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(14));
pin_reg.pullup = 1;
WRITE_PERI_REG(GPIO_PIN_REG(14), pin_reg.val);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_GPIO13); // GPIO13 is SPI MOSI pin (Master Data Out)
GPIO.enable_w1ts |= (0x1 << 13);
GPIO.pin[13].driver = 1; // OD output
pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(13));
pin_reg.pullup = 0;
WRITE_PERI_REG(GPIO_PIN_REG(13), pin_reg.val);
// use RTC pin 16
// output disable
WRITE_PERI_REG(PAD_XPD_DCDC_CONF, ((READ_PERI_REG(PAD_XPD_DCDC_CONF) & (uint32_t)0xffffffbc)) | (uint32_t)0x1); // mux configuration for XPD_DCDC and rtc_gpio0 connection
CLEAR_PERI_REG_MASK(RTC_GPIO_CONF, 0x1); // mux configuration for out enable
CLEAR_PERI_REG_MASK(RTC_GPIO_ENABLE, 0x1); // out disable
// pulldown disable
pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_TDO));
pin_reg.rtc_pin.pulldown = 0;
WRITE_PERI_REG(GPIO_PIN_REG(PIN_TDO), pin_reg.val);
// gpio_set_direction(PIN_TDI, GPIO_MODE_OUTPUT);
GPIO.enable_w1ts |= (0x1 << PIN_TDI);
GPIO.pin[PIN_TDI].driver = 0;
pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_TDI));
pin_reg.pullup = 0;
WRITE_PERI_REG(GPIO_PIN_REG(PIN_TDI), pin_reg.val);
// gpio_set_direction(PIN_nTRST, GPIO_MODE_OUTPUT_OD);
// gpio_set_direction(PIN_nRESET, GPIO_MODE_OUTPUT_OD);
GPIO.enable_w1tc |= (0x1 << PIN_nTRST);
GPIO.pin[PIN_nTRST].driver = 1;
GPIO.enable_w1tc |= (0x1 << PIN_nRESET);
GPIO.pin[PIN_nRESET].driver = 1;
// gpio_set_pull_mode(PIN_nTRST, GPIO_PULLUP_ONLY);
// gpio_set_pull_mode(PIN_nRESET, GPIO_PULLUP_ONLY);
pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_nTRST));
pin_reg.pullup = 1;
WRITE_PERI_REG(GPIO_PIN_REG(PIN_nTRST), pin_reg.val);
pin_reg.val = READ_PERI_REG(GPIO_PIN_REG(PIN_nRESET));
pin_reg.pullup = 1;
WRITE_PERI_REG(GPIO_PIN_REG(PIN_nRESET), pin_reg.val);
}
#elif defined CONFIG_IDF_TARGET_ESP32
__STATIC_INLINE void PORT_JTAG_SETUP(void)
{
// set TCK, TMS pin
//// FIXME: esp32
//DAP_SPI_Deinit();
// PIN_TDO output disable
GPIO.enable_w1tc = (0x1 << PIN_TDO);
// PIN_TDO input enable
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[PIN_TDO]);
// gpio_set_direction(PIN_TDI, GPIO_MODE_OUTPUT);
GPIO.enable_w1ts = (0x1 << PIN_TDI);
GPIO.pin[PIN_TDI].pad_driver = 0;
REG_CLR_BIT(GPIO_PIN_MUX_REG[PIN_TDI], FUN_PD); // disable pull down
// gpio_set_direction(PIN_nTRST, GPIO_MODE_OUTPUT_OD);
// gpio_set_direction(PIN_nRESET, GPIO_MODE_OUTPUT_OD);
GPIO.enable_w1tc = (0x1 << PIN_nTRST);
GPIO.pin[PIN_nTRST].pad_driver = 1;
GPIO.enable_w1tc = (0x1 << PIN_nRESET);
GPIO.pin[PIN_nRESET].pad_driver = 1;
// gpio_set_pull_mode(PIN_nTRST, GPIO_PULLUP_ONLY);
// gpio_set_pull_mode(PIN_nRESET, GPIO_PULLUP_ONLY);
GPIO_PULL_UP_ONLY_SET(PIN_nTRST);
GPIO_PULL_UP_ONLY_SET(PIN_nRESET);
}
#endif
/**
* @brief Setup SWD I/O pins: SWCLK, SWDIO, and nRESET.
* Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode:
* - SWCLK, SWDIO, nRESET to output mode and set to default high level.
* - TDI, nTRST to HighZ mode (pins are unused in SWD mode).
*
*/
__STATIC_INLINE void PORT_SWD_SETUP(void)
{
// We will switch to the specific mode when setting the transfer rate.
// Now we need to set it to ordinary GPIO mode. In most implementations,
// the DAP will then read the status of the PIN via the `SWJ_PIN` command.
DAP_SPI_Deinit();
}
/**
* @brief Disable JTAG/SWD I/O Pins.
* Disables the DAP Hardware I/O pins which configures:
* - TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode.
*
*/
__STATIC_INLINE void PORT_OFF(void)
{
// Will be called when the DAP disconnected
DAP_SPI_Disable();
}
// SWCLK/TCK I/O pin -------------------------------------
/**
* @brief SWCLK/TCK I/O pin: Get Input.
*
* @return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN(void)
{
////TODO: can we set to 0?
return 0;
}
/**
* @brief SWCLK/TCK I/O pin: Set Output to High.
*
* Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET(void)
{
GPIO.out_w1ts |= (0x1 << PIN_SWCLK);
}
/**
* @brief SWCLK/TCK I/O pin: Set Output to Low.
*
* Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR(void)
{
GPIO.out_w1tc |= (0x1 << PIN_SWCLK);
}
// SWDIO/TMS Pin I/O --------------------------------------
/**
* @brief SWDIO/TMS I/O pin: Get Input.
*
* @return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN(void)
{
// Note that we only use mosi in GPIO mode
return ((GPIO.in >> PIN_SWDIO_MOSI) & 0x1) ? 1 : 0;
}
/**
* @brief SWDIO/TMS I/O pin: Set Output to High.
*
* Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET(void)
{
GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI);
}
/**
* @brief SWDIO/TMS I/O pin: Set Output to Low.
*
* Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR(void)
{
GPIO.out_w1tc |= (0x1 << PIN_SWDIO_MOSI);
}
/**
* @brief SWDIO I/O pin: Get Input (used in SWD mode only).
*
* @return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN(void)
{
// Note that we only use mosi in GPIO mode
return ((GPIO.in >> PIN_SWDIO_MOSI) & 0x1) ? 1 : 0;
}
/**
* @brief SWDIO I/O pin: Set Output (used in SWD mode only).
*
* @param bit Output value for the SWDIO DAP hardware I/O pin.
*
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT(uint32_t bit)
{
/**
* Important: Use only one bit (bit0) of param!
* Sometimes the func "SWD_TransferFunction" of SW_DP.c will
* issue "2" as param instead of "0". Zach Lee
*/
if ((bit & 1U) == 1)
{
//set bit
GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI);
}
else
{
//reset bit
GPIO.out_w1tc |= (0x1 << PIN_SWDIO_MOSI);
}
}
/**
* @brief SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
* Configure the SWDIO DAP hardware I/O pin to output mode. This function is
* called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE(void)
{
// set \ref gpio_set_direction -> OUTPUT
// GPIO.enable_w1ts |= (0x1 << PIN_SWDIO_MOSI);
// GPIO.pin[PIN_SWDIO_MOSI].driver = 0;
do {}while (0);
}
/**
* @brief SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
* Configure the SWDIO DAP hardware I/O pin to input mode. This function is
* called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE(void)
{
// may be unuse.
// set \ref gpio_set_dircetion -> INPUT
// esp8266 input is always connected
// GPIO.enable_w1tc |= (0x1 << PIN_SWDIO_MOSI);
// GPIO.pin[PIN_SWDIO_MOSI].driver = 0;
#ifdef CONFIG_IDF_TARGET_ESP8266
GPIO.out_w1ts |= (0x1 << PIN_SWDIO_MOSI);
#elif defined CONFIG_IDF_TARGET_ESP32
// Note that the input of esp32 is not always connected.
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[PIN_SWDIO_MOSI]);
GPIO.out_w1ts = (0x1 << PIN_SWDIO_MOSI);
#endif
}
// TDI Pin I/O ---------------------------------------------
/**
* @brief TDI I/O pin: Get Input.
*
* @return Current status of the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDI_IN(void)
{
return ((GPIO.in >> PIN_TDI) & 0x1) ? 1 : 0;
}
/**
* @brief TDI I/O pin: Set Output.
*
* @param bit Output value for the TDI DAP hardware I/O pin.
*
*/
__STATIC_FORCEINLINE void PIN_TDI_OUT(uint32_t bit)
{
if ((bit & 1U) == 1)
{
//set bit
GPIO.out_w1ts |= (0x1 << PIN_TDI);
}
else
{
//reset bit
GPIO.out_w1tc |= (0x1 << PIN_TDI);
}
}
// TDO Pin I/O ---------------------------------------------
/**
* @brief TDO I/O pin: Get Input.
*
* @return Current status of the TDO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDO_IN(void)
{
#ifdef CONFIG_IDF_TARGET_ESP8266
return READ_PERI_REG(RTC_GPIO_IN_DATA) & 0x1;
#elif defined CONFIG_IDF_TARGET_ESP32
return ((GPIO.in >> PIN_TDO) & 0x1) ? 1 : 0;
#endif
}
// nTRST Pin I/O -------------------------------------------
/**
* @brief nTRST I/O pin: Get Input.
*
* @return Current status of the nTRST DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nTRST_IN(void)
{
return 0; // not available
}
/**
* @brief nTRST I/O pin: Set Output.
*
* @param bit JTAG TRST Test Reset pin status:
* - 0: issue a JTAG TRST Test Reset.
- 1: release JTAG TRST Test Reset.
*/
__STATIC_FORCEINLINE void PIN_nTRST_OUT(uint32_t bit)
{
// Vendor reset sequence
; // not available
}
// nRESET Pin I/O------------------------------------------
/**
* @brief nRESET I/O pin: Get Input.
*
* @return Current status of the nRESET DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nRESET_IN(void)
{
return ((GPIO.in >> PIN_nRESET) & 0x1) ? 1 : 0;
}
/**
* @brief nRESET I/O pin: Set Output.
*
* @param bit target device hardware reset pin status:
* - 0: issue a device hardware reset.
* - 1: release device hardware reset.
*/
__STATIC_FORCEINLINE void PIN_nRESET_OUT(uint32_t bit)
{
// Vendor reset sequence
//// FIXME: unavailable
if ((bit & 1U) == 1)
{
//set bit
GPIO.out_w1ts |= (0x1 << PIN_nRESET);
}
else
{
//reset bit
GPIO.out_w1tc |= (0x1 << PIN_nRESET);
}
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit.
It is recommended to provide the following LEDs for status indication:
- Connect LED: is active when the DAP hardware is connected to a debugger.
- Running LED: is active when the debugger has put the target device into running state.
*/
/** Debug Unit: Set status of Connected LED.
\param bit status of the Connect LED.
- 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
/**
* @brief Debug Unit: Set status of Connected LED.
*
* @param bit status of the Connect LED.
* - 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
* - 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT(uint32_t bit)
{
#if (!defined USE_UART_BRIDGE || USE_UART_BRIDGE == 0)
if (bit)
{
//set bit
GPIO.out_w1ts |= (0x1 << PIN_LED_CONNECTED);
}
else
{
//reset bit
GPIO.out_w1tc |= (0x1 << PIN_LED_CONNECTED);
}
#endif
}
/**
* @brief Debug Unit: Set status Target Running LED.
*
* @param bit status of the Target Running LED.
* - 1: Target Running LED ON: program execution in target started.
* - 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT(uint32_t bit)
{
// if (bit)
// {
// //set bit
// GPIO.out_w1ts |= (0x1 << PIN_LED_RUNNING);
// }
// else
// {
// //reset bit
// GPIO.out_w1tc |= (0x1 << PIN_LED_RUNNING);
// }
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp
\ingroup DAP_ConfigIO_gr
@{
Access function for Test Domain Timer.
The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET. By
default, the DWT timer is used. The frequency of this timer is configured with \ref TIMESTAMP_CLOCK.
*/
/**
* @brief Get timestamp of Test Domain Timer.
*
* @return Current timestamp value.
*/
__STATIC_INLINE uint32_t TIMESTAMP_GET(void)
{
return get_timer_count();
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP.
*/
/** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized).
This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the
Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set:
- I/O clock system enabled.
- all I/O pins: input buffer enabled, output pins are set to HighZ mode.
- for nTRST, nRESET a weak pull-up (if available) is enabled.
- LED output pins are enabled and LEDs are turned off.
*/
__STATIC_INLINE void DAP_SETUP(void)
{
// Connecting non-SWD pins to GPIO
GPIO_FUNCTION_SET(PIN_TDO);
GPIO_FUNCTION_SET(PIN_TDI);
GPIO_FUNCTION_SET(PIN_nTRST);
GPIO_FUNCTION_SET(PIN_nRESET);
#if (!defined USE_UART_BRIDGE || USE_UART_BRIDGE == 0)
GPIO_FUNCTION_SET(PIN_LED_CONNECTED);
#endif
// GPIO_FUNCTION_SET(PIN_LED_RUNNING);
// Configure: LED as output (turned off)
#if (!defined USE_UART_BRIDGE || USE_UART_BRIDGE == 0)
GPIO_SET_DIRECTION_NORMAL_OUT(PIN_LED_CONNECTED);
#endif
// GPIO_SET_DIRECTION_NORMAL_OUT(PIN_LED_RUNNING);
LED_CONNECTED_OUT(0);
LED_RUNNING_OUT(0);
PORT_OFF();
}
/** Reset Target Device with custom specific I/O pin or command sequence.
This function allows the optional implementation of a device specific reset sequence.
It is called when the command \ref DAP_ResetTarget and is for example required
when a device needs a time-critical unlock sequence that enables the debug port.
\return 0 = no device specific reset sequence is implemented.\n
1 = a device specific reset sequence is implemented.
*/
__STATIC_INLINE uint8_t RESET_TARGET(void)
{
return (0U); // not available
}
///@}
#endif /* __DAP_CONFIG_H__ */