0
0
Fork 0
wireless-proxy-esp32/components/DAP/source/uart_modify.c

1257 lines
42 KiB
C

/**
* @brief Made some simple modifications to the official UART
*
*/
// Copyright 2018-2025 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/ringbuf.h"
#include "freertos/event_groups.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_attr.h"
// SWO modify
#include "DAP_config.h"
#include "esp8266/uart_struct.h"
#include "esp8266/uart_register.h"
#include "esp8266/pin_mux_register.h"
#include "esp8266/eagle_soc.h"
#include "esp8266/rom_functions.h"
#include "rom/ets_sys.h"
#include "uart_modify.h"
#include "driver/uart_select.h"
#define portYIELD_FROM_ISR() taskYIELD()
#define UART_ENTER_CRITICAL() portENTER_CRITICAL()
#define UART_EXIT_CRITICAL() portEXIT_CRITICAL()
static const char *UART_TAG = "uart";
#define UART_CHECK(a, str, ret_val) \
if (!(a)) \
{ \
ESP_LOGE(UART_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
#define UART_EMPTY_THRESH_DEFAULT (10)
#define UART_FULL_THRESH_DEFAULT (120)
#define UART_TOUT_THRESH_DEFAULT (10)
typedef struct
{
uart_event_type_t type; /*!< UART TX data type */
struct
{
size_t size;
uint8_t data[0];
} tx_data;
} uart_tx_data_t;
typedef struct
{
uart_port_t uart_num; /*!< UART port number*/
int queue_size; /*!< UART event queue size*/
QueueHandle_t xQueueUart; /*!< UART queue handler*/
uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
// rx parameters
int rx_buffered_len; /*!< UART cached data length */
SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
int rx_buf_size; /*!< RX ring buffer size */
RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
// tx parameters
SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
int tx_buf_size; /*!< TX ring buffer size */
RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
uint32_t tx_len_cur;
bool wait_tx_done_flg;
uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
} uart_obj_t;
static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
// DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR
static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {&uart0, &uart1};
typedef void (*uart_isr_t)(void *);
typedef struct
{
uart_isr_t fn; /*!< isr function */
void *args; /*!< isr function args */
} uart_isr_func_t;
static uart_isr_func_t uart_isr_func[UART_NUM_MAX];
// SWO modify
extern EventGroupHandle_t kUART_Monitoe_event_group;
#define UART_GOT_DATA BIT0
extern void SetTraceError(uint8_t flag);
#define DAP_SWO_CAPTURE_ACTIVE (1U << 0)
#define DAP_SWO_CAPTURE_PAUSED (1U << 1)
#define DAP_SWO_STREAM_ERROR (1U << 6)
#define DAP_SWO_BUFFER_OVERRUN (1U << 7)
//
esp_err_t my_uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->conf0.bit_num = data_bit;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((data_bit), "empty pointer", ESP_FAIL);
*(data_bit) = UART[uart_num]->conf0.bit_num;
return ESP_OK;
}
esp_err_t my_uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->conf0.stop_bit_num = stop_bit;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((stop_bit), "empty pointer", ESP_FAIL);
(*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
return ESP_OK;
}
esp_err_t my_uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK(((parity_mode == UART_PARITY_DISABLE) || (parity_mode == UART_PARITY_EVEN) || (parity_mode == UART_PARITY_ODD)),
"parity_mode error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->conf0.parity = (parity_mode & 0x1);
UART[uart_num]->conf0.parity_en = ((parity_mode >> 1) & 0x1);
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((parity_mode), "empty pointer", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
if (UART[uart_num]->conf0.parity_en)
{
if (UART[uart_num]->conf0.parity)
{
(*parity_mode) = UART_PARITY_ODD;
}
else
{
(*parity_mode) = UART_PARITY_EVEN;
}
}
else
{
(*parity_mode) = UART_PARITY_DISABLE;
}
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->clk_div.val = (uint32_t)(UART_CLK_FREQ / baud_rate) & 0xFFFFF;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((baudrate), "empty pointer", ESP_ERR_INVALID_ARG);
(*baudrate) = (UART_CLK_FREQ / (UART[uart_num]->clk_div.val & 0xFFFFF));
return ESP_OK;
}
esp_err_t my_uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->conf0.val &= ~UART_LINE_INV_MASK;
UART[uart_num]->conf0.val |= inverse_mask;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "uart_flow ctrl error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
if (flow_ctrl & UART_HW_FLOWCTRL_RTS)
{
UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
UART[uart_num]->conf1.rx_flow_en = 1;
}
else
{
UART[uart_num]->conf1.rx_flow_en = 0;
}
if (flow_ctrl & UART_HW_FLOWCTRL_CTS)
{
UART[uart_num]->conf0.tx_flow_en = 1;
}
else
{
UART[uart_num]->conf0.tx_flow_en = 0;
}
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
if (UART[uart_num]->conf1.rx_flow_en)
{
val |= UART_HW_FLOWCTRL_RTS;
}
if (UART[uart_num]->conf0.tx_flow_en)
{
val |= UART_HW_FLOWCTRL_CTS;
}
(*flow_ctrl) = val;
return ESP_OK;
}
esp_err_t my_uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_ARG);
uint32_t baudrate;
uint32_t byte_delay_us = 0;
BaseType_t res;
portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
// Take tx_mux
res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
if (res == pdFALSE)
{
return ESP_ERR_TIMEOUT;
}
if (false == p_uart_obj[uart_num]->wait_tx_done_flg)
{
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
my_uart_get_baudrate(uart_num, &baudrate);
byte_delay_us = (uint32_t)(10000000 / baudrate); // (1/baudrate)*10*1000_000 us
ticks_to_wait = ticks_end - xTaskGetTickCount();
// wait for tx done sem.
if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, ticks_to_wait))
{
while (1)
{
if (UART[uart_num]->status.txfifo_cnt == 0)
{
ets_delay_us(byte_delay_us); // Delay one byte time to guarantee transmission completion
break;
}
}
p_uart_obj[uart_num]->wait_tx_done_flg = false;
}
else
{
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_ERR_TIMEOUT;
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return ESP_OK;
}
esp_err_t my_uart_enable_swap(void)
{
// wait for tx done.
my_uart_wait_tx_done(UART_NUM_0, portMAX_DELAY);
UART_ENTER_CRITICAL();
// MTCK -> UART0_CTS -> U0RXD
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS);
// MTD0 -> UART0_RTS -> U0TXD
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UART0_RTS);
// enable swap U0TXD <-> UART0_RTS and U0RXD <-> UART0_CTS
SET_PERI_REG_MASK(UART_SWAP_REG, 0x4);
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_disable_swap(void)
{
// wait for tx done.
my_uart_wait_tx_done(UART_NUM_0, portMAX_DELAY);
UART_ENTER_CRITICAL();
// disable swap U0TXD <-> UART0_RTS and U0RXD <-> UART0_CTS
CLEAR_PERI_REG_MASK(UART_SWAP_REG, 0x4);
UART_EXIT_CRITICAL();
return ESP_OK;
}
static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->conf0.rxfifo_rst = 0x1;
UART[uart_num]->conf0.rxfifo_rst = 0x0;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_clear_intr_status(uart_port_t uart_num, uint32_t mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->int_clr.val |= mask;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->int_ena.val |= enable_mask;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->int_ena.val &= ~disable_mask;
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_enable_rx_intr(uart_port_t uart_num)
{
return my_uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
}
esp_err_t my_uart_disable_rx_intr(uart_port_t uart_num)
{
return my_uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
}
esp_err_t my_uart_disable_tx_intr(uart_port_t uart_num)
{
return my_uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
}
esp_err_t my_uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
UART[uart_num]->int_clr.txfifo_empty = 1;
UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & 0x7f;
UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
UART_EXIT_CRITICAL();
return ESP_OK;
}
static void uart_intr_service(void *arg)
{
// UART intr process
uint32_t uart_num = 0;
// read status to get interrupt status for UART0-1
uint32_t uart_intr_status = UART[uart_num]->int_st.val;
if (uart_isr_func == NULL)
{
return;
}
do
{
uart_intr_status = UART[uart_num]->int_st.val;
if (uart_intr_status != 0)
{
if (uart_isr_func[uart_num].fn != NULL)
{
uart_isr_func[uart_num].fn(uart_isr_func[uart_num].args);
}
}
} while (++uart_num < UART_NUM_MAX);
}
esp_err_t my_uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
_xt_isr_mask(1 << ETS_UART_INUM);
_xt_isr_attach(ETS_UART_INUM, uart_intr_service, NULL);
uart_isr_func[uart_num].fn = fn;
uart_isr_func[uart_num].args = arg;
_xt_isr_unmask(1 << ETS_UART_INUM);
UART_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t my_uart_param_config(uart_port_t uart_num, uart_config_t *uart_conf)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
if (uart_num == UART_NUM_1)
{
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK);
}
else
{
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
if (uart_conf->flow_ctrl & UART_HW_FLOWCTRL_RTS)
{
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_U0RTS);
}
if (uart_conf->flow_ctrl & UART_HW_FLOWCTRL_CTS)
{
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS);
}
my_uart_set_hw_flow_ctrl(uart_num, uart_conf->flow_ctrl, uart_conf->rx_flow_ctrl_thresh);
}
my_uart_set_baudrate(uart_num, uart_conf->baud_rate);
my_uart_set_word_length(uart_num, uart_conf->data_bits);
my_uart_set_stop_bits(uart_num, uart_conf->stop_bits);
my_uart_set_parity(uart_num, uart_conf->parity);
uart_reset_rx_fifo(uart_num);
return ESP_OK;
}
esp_err_t my_uart_intr_config(uart_port_t uart_num, uart_intr_config_t *intr_conf)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
my_uart_clear_intr_status(uart_num, UART_INTR_MASK);
UART_ENTER_CRITICAL();
UART[uart_num]->int_clr.val = UART_INTR_MASK;
if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M)
{
UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & 0x7f);
UART[uart_num]->conf1.rx_tout_en = 1;
}
else
{
UART[uart_num]->conf1.rx_tout_en = 0;
}
if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M)
{
UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
}
if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M)
{
UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
}
// my_uart_clear_intr_status(UART[uart_num], mask);
UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
_xt_isr_unmask(0x1 << ETS_UART_INUM);
UART_EXIT_CRITICAL();
return ESP_OK;
}
// internal isr handler for default driver code.
static void uart_rx_intr_handler_default(void *param)
{
uart_obj_t *p_uart = (uart_obj_t *)param;
uint8_t uart_num = p_uart->uart_num;
uart_dev_t *uart_reg = UART[uart_num];
int rx_fifo_len = uart_reg->status.rxfifo_cnt;
uint8_t buf_idx = 0;
uint32_t uart_intr_status = UART[uart_num]->int_st.val;
uart_event_t uart_event;
BaseType_t task_woken = 0;
while (uart_intr_status != 0x0)
{
uart_select_notif_t notify = UART_SELECT_ERROR_NOTIF;
buf_idx = 0;
uart_event.type = UART_EVENT_MAX;
if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M)
{
my_uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
my_uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
// TX semaphore will only be used when tx_buf_size is zero.
if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0)
{
p_uart->tx_waiting_fifo = false;
xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &task_woken);
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
}
else
{
// We don't use TX ring buffer, because the size is zero.
if (p_uart->tx_buf_size == 0)
{
continue;
}
int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
bool en_tx_flg = false;
// We need to put a loop here, in case all the buffer items are very short.
// That would cause a watch_dog reset because empty interrupt happens so often.
// Although this is a loop in ISR, this loop will execute at most 128 turns.
while (tx_fifo_rem)
{
if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0)
{
size_t size;
p_uart->tx_head = (uart_tx_data_t *)xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
if (p_uart->tx_head)
{
// The first item is the data description
// Get the first item to get the data information
if (p_uart->tx_len_tot == 0)
{
p_uart->tx_ptr = NULL;
p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
// We have saved the data description from the 1st item, return buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &task_woken);
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
}
else if (p_uart->tx_ptr == NULL)
{
// Update the TX item pointer, we will need this to return item to buffer.
p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
en_tx_flg = true;
p_uart->tx_len_cur = size;
}
}
else
{
// Can not get data from ring buffer, return;
break;
}
}
if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0)
{
// To fill the TX FIFO.
int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
for (buf_idx = 0; buf_idx < send_len; buf_idx++)
{
UART[uart_num]->fifo.rw_byte = *(p_uart->tx_ptr++) & 0xff;
}
p_uart->tx_len_tot -= send_len;
p_uart->tx_len_cur -= send_len;
tx_fifo_rem -= send_len;
if (p_uart->tx_len_cur == 0)
{
// Return item to ring buffer.
vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &task_woken);
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
p_uart->tx_head = NULL;
p_uart->tx_ptr = NULL;
}
if (p_uart->tx_len_tot == 0)
{
en_tx_flg = false;
xSemaphoreGiveFromISR(p_uart->tx_done_sem, &task_woken);
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
}
else
{
en_tx_flg = true;
}
}
}
if (en_tx_flg)
{
my_uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
my_uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
}
}
}
else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M))
{
rx_fifo_len = uart_reg->status.rxfifo_cnt;
if (p_uart->rx_buffer_full_flg == false)
{
// We have to read out all data in RX FIFO to clear the interrupt signal
while (buf_idx < rx_fifo_len)
{
p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
}
// Get the buffer from the FIFO
// After Copying the Data From FIFO ,Clear intr_status
my_uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
uart_event.type = UART_DATA;
uart_event.size = rx_fifo_len;
p_uart->rx_stash_len = rx_fifo_len;
// If we fail to push data to ring buffer, we will have to stash the data, and send next time.
// Mainly for applications that uses flow control or small ring buffer.
if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &task_woken))
{
my_uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
uart_event.type = UART_BUFFER_FULL;
p_uart->rx_buffer_full_flg = true;
// SWO modify
// When we cannot write to the ring buffer, we also think that the serial port is "overflow".
SetTraceError(DAP_SWO_BUFFER_OVERRUN);
}
else
{
p_uart->rx_buffered_len += p_uart->rx_stash_len;
xEventGroupSetBitsFromISR(kUART_Monitoe_event_group, UART_GOT_DATA, pdFALSE);
}
notify = UART_SELECT_READ_NOTIF;
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
}
else
{
my_uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
my_uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
}
}
else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M)
{
// When fifo overflows, we reset the fifo.
uart_reset_rx_fifo(uart_num);
uart_reg->int_clr.rxfifo_ovf = 1;
uart_event.type = UART_FIFO_OVF;
notify = UART_SELECT_ERROR_NOTIF;
// SWO modify
// Unfortunately, Overflow occurs usually there is no flow control.
// Although the overflow situation often occurs,
// the buffer stability of the serial port is better,
// and there is basically no data loss.
////TODO: Can we get rid of this code?
SetTraceError(DAP_SWO_BUFFER_OVERRUN);
}
else if (uart_intr_status & UART_FRM_ERR_INT_ST_M)
{
uart_reg->int_clr.frm_err = 1;
uart_event.type = UART_FRAME_ERR;
notify = UART_SELECT_ERROR_NOTIF;
// SWO modify
SetTraceError(DAP_SWO_STREAM_ERROR);
}
else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M)
{
uart_reg->int_clr.parity_err = 1;
uart_event.type = UART_PARITY_ERR;
notify = UART_SELECT_ERROR_NOTIF;
// SWO modify
SetTraceError(DAP_SWO_STREAM_ERROR);
}
else
{
uart_reg->int_clr.val = uart_intr_status; // simply clear all other intr status
uart_event.type = UART_EVENT_MAX;
notify = UART_SELECT_ERROR_NOTIF;
// SWO modify
SetTraceError(DAP_SWO_STREAM_ERROR);
}
#ifdef CONFIG_USING_ESP_VFS
if (uart_event.type != UART_EVENT_MAX && p_uart->uart_select_notif_callback)
{
p_uart->uart_select_notif_callback(uart_num, notify, &task_woken);
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
}
#else
(void)notify;
#endif
if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart)
{
if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void *)&uart_event, &task_woken))
{
ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
}
if (task_woken == pdTRUE)
{
portYIELD_FROM_ISR();
}
}
uart_intr_status = uart_reg->int_st.val;
}
}
// Fill UART tx_fifo and return a number,
// This function by itself is not thread-safe, always call from within a muxed section.
static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
{
uint8_t i = 0;
uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
for (i = 0; i < copy_cnt; i++)
{
UART[uart_num]->fifo.rw_byte = buffer[i];
}
return copy_cnt;
}
int my_uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_CHECK(buffer, "buffer null", (-1));
if (len == 0)
{
return 0;
}
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
int tx_len = uart_fill_fifo(uart_num, (const char *)buffer, len);
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return tx_len;
}
static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size)
{
if (size == 0)
{
return 0;
}
size_t original_size = size;
// lock for uart_tx
xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
p_uart_obj[uart_num]->wait_tx_done_flg = true;
if (p_uart_obj[uart_num]->tx_buf_size > 0)
{
int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
int offset = 0;
uart_tx_data_t evt;
evt.tx_data.size = size;
evt.type = UART_DATA;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *)&evt, sizeof(uart_tx_data_t), portMAX_DELAY);
while (size > 0)
{
int send_size = size > max_size / 2 ? max_size / 2 : size;
xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *)(src + offset), send_size, portMAX_DELAY);
size -= send_size;
offset += send_size;
my_uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
}
else
{
while (size)
{
// semaphore for tx_fifo available
if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY))
{
size_t sent = uart_fill_fifo(uart_num, (char *)src, size);
if (sent < size)
{
p_uart_obj[uart_num]->tx_waiting_fifo = true;
my_uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
}
size -= sent;
src += sent;
}
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
xSemaphoreGive(p_uart_obj[uart_num]->tx_done_sem);
}
xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
return original_size;
}
int my_uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
UART_CHECK(src, "buffer null", (-1));
return uart_tx_all(uart_num, src, size);
}
int my_uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
UART_CHECK((buf), "uart data null", (-1));
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
uint8_t *data = NULL;
size_t size;
size_t copy_len = 0;
int len_tmp;
if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE)
{
return -1;
}
while (length)
{
if (p_uart_obj[uart_num]->rx_cur_remain == 0)
{
data = (uint8_t *)xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType)ticks_to_wait);
if (data)
{
p_uart_obj[uart_num]->rx_head_ptr = data;
p_uart_obj[uart_num]->rx_ptr = data;
p_uart_obj[uart_num]->rx_cur_remain = size;
}
else
{
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
}
if (p_uart_obj[uart_num]->rx_cur_remain > length)
{
len_tmp = length;
}
else
{
len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
}
memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
UART_ENTER_CRITICAL();
p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
p_uart_obj[uart_num]->rx_ptr += len_tmp;
UART_EXIT_CRITICAL();
p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
copy_len += len_tmp;
length -= len_tmp;
if (p_uart_obj[uart_num]->rx_cur_remain == 0)
{
vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ptr = NULL;
if (p_uart_obj[uart_num]->rx_buffer_full_flg)
{
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if (res == pdTRUE)
{
UART_ENTER_CRITICAL();
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
UART_EXIT_CRITICAL();
my_uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
}
}
}
}
xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
return copy_len;
}
esp_err_t my_uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_ARG);
*size = p_uart_obj[uart_num]->rx_buffered_len;
return ESP_OK;
}
esp_err_t my_uart_flush(uart_port_t uart_num) __attribute__((alias("my_uart_flush_input")));
esp_err_t my_uart_flush_input(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_ARG);
uart_obj_t *p_uart = p_uart_obj[uart_num];
uint8_t *data;
size_t size;
// rx sem protect the ring buffer read related functions
xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
my_uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
while (true)
{
if (p_uart->rx_head_ptr)
{
vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
UART_ENTER_CRITICAL();
p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
UART_EXIT_CRITICAL();
p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0;
p_uart->rx_head_ptr = NULL;
}
data = (uint8_t *)xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType)0);
if (data == NULL)
{
if (p_uart_obj[uart_num]->rx_buffered_len != 0)
{
ESP_LOGE(UART_TAG, "rx_buffered_len error");
p_uart_obj[uart_num]->rx_buffered_len = 0;
}
// We also need to clear the `rx_buffer_full_flg` here.
UART_ENTER_CRITICAL();
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
UART_EXIT_CRITICAL();
break;
}
UART_ENTER_CRITICAL();
p_uart_obj[uart_num]->rx_buffered_len -= size;
UART_EXIT_CRITICAL();
vRingbufferReturnItem(p_uart->rx_ring_buf, data);
if (p_uart_obj[uart_num]->rx_buffer_full_flg)
{
BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
if (res == pdTRUE)
{
UART_ENTER_CRITICAL();
p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
UART_EXIT_CRITICAL();
}
}
}
p_uart->rx_ptr = NULL;
p_uart->rx_cur_remain = 0;
p_uart->rx_head_ptr = NULL;
uart_reset_rx_fifo(uart_num);
my_uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
xSemaphoreGive(p_uart->rx_mux);
return ESP_OK;
}
esp_err_t my_uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int no_use)
{
esp_err_t r;
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((rx_buffer_size > UART_FIFO_LEN) || ((uart_num == UART_NUM_1) && (rx_buffer_size == 0)), "uart rx buffer length error(>128)", ESP_ERR_INVALID_ARG);
UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_ERR_INVALID_ARG);
UART_CHECK((queue_size >= 0), "queue_size error(>=0)", ESP_ERR_INVALID_ARG);
if (p_uart_obj[uart_num] == NULL)
{
p_uart_obj[uart_num] = (uart_obj_t *)calloc(1, sizeof(uart_obj_t));
if (p_uart_obj[uart_num] == NULL)
{
ESP_LOGE(UART_TAG, "UART driver malloc error");
return ESP_FAIL;
}
p_uart_obj[uart_num]->uart_num = uart_num;
p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
p_uart_obj[uart_num]->queue_size = queue_size;
p_uart_obj[uart_num]->tx_ptr = NULL;
p_uart_obj[uart_num]->tx_head = NULL;
p_uart_obj[uart_num]->tx_len_tot = 0;
p_uart_obj[uart_num]->rx_buffered_len = 0;
p_uart_obj[uart_num]->wait_tx_done_flg = false;
if (uart_queue)
{
p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
*uart_queue = p_uart_obj[uart_num]->xQueueUart;
ESP_LOGI(UART_TAG, "queue free spaces: %d", (int)uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
}
else
{
p_uart_obj[uart_num]->xQueueUart = NULL;
}
p_uart_obj[uart_num]->rx_buffer_full_flg = false;
p_uart_obj[uart_num]->tx_waiting_fifo = false;
p_uart_obj[uart_num]->rx_ptr = NULL;
p_uart_obj[uart_num]->rx_cur_remain = 0;
p_uart_obj[uart_num]->rx_head_ptr = NULL;
p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
p_uart_obj[uart_num]->rx_buf_size = rx_buffer_size;
if (tx_buffer_size > 0)
{
p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
}
else
{
p_uart_obj[uart_num]->tx_ring_buf = NULL;
p_uart_obj[uart_num]->tx_buf_size = 0;
}
p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
}
else
{
ESP_LOGE(UART_TAG, "UART driver already installed");
return ESP_FAIL;
}
r = my_uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num]);
if (r != ESP_OK)
{
goto err;
}
uart_intr_config_t uart_intr = {
.intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M | UART_FRM_ERR_INT_ENA_M | UART_RXFIFO_OVF_INT_ENA_M,
.rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
.rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
.txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT};
r = my_uart_intr_config(uart_num, &uart_intr);
if (r != ESP_OK)
{
goto err;
}
return r;
err:
ESP_LOGE(UART_TAG, "driver install error");
my_uart_driver_delete(uart_num);
return r;
}
// Make sure no other tasks are still using UART before you call this function
esp_err_t my_uart_driver_delete(uart_port_t uart_num)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
if (p_uart_obj[uart_num] == NULL)
{
ESP_LOGI(UART_TAG, "ALREADY NULL");
return ESP_OK;
}
my_uart_disable_rx_intr(uart_num);
my_uart_disable_tx_intr(uart_num);
_xt_isr_mask(0x1 << ETS_UART_INUM);
if (p_uart_obj[uart_num]->tx_fifo_sem)
{
vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
p_uart_obj[uart_num]->tx_fifo_sem = NULL;
}
if (p_uart_obj[uart_num]->tx_done_sem)
{
vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
p_uart_obj[uart_num]->tx_done_sem = NULL;
}
if (p_uart_obj[uart_num]->tx_mux)
{
vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
p_uart_obj[uart_num]->tx_mux = NULL;
}
if (p_uart_obj[uart_num]->rx_mux)
{
vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
p_uart_obj[uart_num]->rx_mux = NULL;
}
if (p_uart_obj[uart_num]->xQueueUart)
{
vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
p_uart_obj[uart_num]->xQueueUart = NULL;
}
if (p_uart_obj[uart_num]->rx_ring_buf)
{
vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
p_uart_obj[uart_num]->rx_ring_buf = NULL;
}
if (p_uart_obj[uart_num]->tx_ring_buf)
{
vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
p_uart_obj[uart_num]->tx_ring_buf = NULL;
}
free(p_uart_obj[uart_num]);
p_uart_obj[uart_num] = NULL;
return ESP_OK;
}
void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
{
if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num])
{
p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t)uart_select_notif_callback;
}
}
esp_err_t my_uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
{
UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
UART_ENTER_CRITICAL();
// The tout_thresh = 1, defines TOUT interrupt timeout equal to
// transmission time of one symbol (~11 bit) on current baudrate
if (tout_thresh > 0)
{
UART[uart_num]->conf1.rx_tout_thrhd = (tout_thresh & 0x7f);
UART[uart_num]->conf1.rx_tout_en = 1;
}
else
{
UART[uart_num]->conf1.rx_tout_en = 0;
}
UART_EXIT_CRITICAL();
return ESP_OK;
}